Let us put our knowledge to good use.

Suppose $v(t)=120 \sqrt{2} \cos (377 t)$, where t is measured in seconds.

Compute $i(t)$, the apparent power drawn
by the load, and its power factor
Remark: If we do not use phasors, notice that we have to utilize $i(t)=C \cdot \frac{d}{d t} v_{c}$, where $C=100 \mu \mathrm{~F}$, and v_{c} equals the voltage across the capacitor. Computing the current may require the solution of a differential equation. Using phasors, that computation becomes extremely simple!

Impedance of $\operatorname{loa}(\bar{Z}):=10 \Omega+\frac{1}{j \omega(100 \mu F)}$.
where $\omega=377 \mathrm{rad} / \mathrm{s}$.

$$
\therefore \bar{Z}=(10.00-j 26.53) \Omega
$$

Voltage phasor \bar{V} corresponding to $v(t)$ is given by $120 e^{j 0} \ldots$ written as 120 LO .

$$
\Rightarrow \bar{I}=\frac{\bar{V}}{\bar{Z}}=\frac{120 \angle 0}{10.00-j 26.53} A=(1.49+j 3.96) \mathrm{A}
$$

In "polar" form, $\bar{I}=4.23 \angle 1.21 \quad A$

$$
\begin{aligned}
& =4.23 \angle 69.33^{\circ} \mathrm{A} . \\
\Rightarrow \quad i(t) & =4.23 \sqrt{2} \cos (377 t+1.21) . \\
& =5.98 \cos (377 t+1.21) . \\
\bar{S} & =\bar{V} \bar{I}^{*} \\
& =(120 \angle 0) \cdot\left(4.23 \angle 69.33^{\circ}\right)^{*} \mathrm{VA} \\
& =507.60 \angle-69.33^{\circ} \mathrm{VA} .
\end{aligned}
$$

Power factor $=\cos \left(-69.33^{\circ}\right)=0.35$ leading.

Example \#2
Consider a parallel array of loads drawing:

- 240 kVA at a power factor of 0.5 lagging
- 150 kW at a power factor of 0.9 leading
- $200+j 100 \mathrm{kVA}$.

Q1. Find the net apparent power drano by the load away.
Q2. How much VAR should be injected in parallel to the load array to make the resulting load have a power factor of 0.5 leading.

Let the apparent power draws of the three loads be given by \bar{S}_{1}, \bar{S}_{2}, and \bar{S}_{3}.

$$
\begin{gathered}
240 \mathrm{kNA}_{10 \mathrm{VA}}^{\cos ^{-1}(0.5)} \\
\frac{150 \mathrm{~kW}}{1 \cos ^{-1}(0.9)}
\end{gathered}
$$

$$
\bar{S}_{1}=240 \angle+60^{\circ} \mathrm{kVA} .
$$

$$
\begin{aligned}
\bar{S}_{2} & =\underbrace{\frac{150}{0.9}}_{\text {why? answer if yourself! }} L-\cos ^{-1}(0.9) \mathrm{kVA} . \\
& =166.67 \angle-25.8^{\circ} \mathrm{kVA} .
\end{aligned}
$$

$$
\begin{aligned}
\bar{S}_{3} & =200+j 100 \mathrm{kVA} \\
& =223.61 \angle 26.57^{\circ}
\end{aligned}
$$

\therefore Total power consumed by the load array is

$$
\begin{aligned}
\bar{S}_{\text {tot }} & =240 \angle 60^{\circ}+166.67 \angle-25.8^{\circ}+223.61 \angle 26.57^{\circ} \\
& =525.67 \angle 26.6^{\circ} \mathrm{kVA} . \\
& =(470+j 235) \mathrm{kVA}
\end{aligned}
$$

To answer the second question, we need Q such that $\bar{S}_{\text {tot }}+j Q$ has a power factor of 0.5 leading. Let's solve graphically.

$$
\begin{aligned}
& 235 \text { VAR }+Q=-470 \tan 60^{\circ} \text { kNAR. } \\
& \Rightarrow Q=-1049 \mathrm{kVAR} .
\end{aligned}
$$

\therefore Reactive power to the tune of 1049 KVAR needs to extracted to achieve the desired power factor.

